- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Gold, Arthur_J (1)
-
Inamdar, Shreeram (1)
-
Joshi, Bisesh (1)
-
Kan, Jinjun (1)
-
Peck, Erin (1)
-
Peipoch, Marc (1)
-
Rahman, Md_Moklesur (1)
-
Sena, Matthew_G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The seasonal controls of hydrology, temperature, hypoxia, and biogeochemical conditions for groundwater ammonium–N (NH4+) concentrations are not well understood. Here we investigated these controls for riparian groundwaters located upstream of two milldams over a period of 4 years. Groundwater chemistry was sampled monthly while groundwater elevations, hydraulic gradients, and temperatures were recorded sub‐hourly. Distinct seasonal patterns for NH4+were observed which differed among the wells. For wells that displayed a strong seasonal pattern, NH4+concentrations increased through the summer and peaked in October–November. These elevated concentrations were attributed to ammonification, suppression of nitrification, and/or dissimilatory nitrate reduction to ammonium (DNRA). These processes were driven by high groundwater temperatures, low hydraulic gradients (or long residence times), hypoxic/anoxic groundwater conditions, and increased availability of dissolved organic carbon as an electron donor. In contrast, NH4+concentrations decreased in the riparian groundwater from January to April during cool and wet conditions. A groundwater well with elevated total dissolved iron (TdFe) concentrations had elevated NH4+concentrations but displayed a muted seasonal response. In addition to hydrologic controls, we attributed this response to additional NH4+contribution from Fe‐driven autotrophic DNRA and/or ammonification linked to dissimilatory Fe reduction. Understanding the temporal patterns and factors controlling NH4+in riparian groundwaters is important for making appropriate watershed management decisions and implementing appropriate best management practices.more » « less
An official website of the United States government
